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Fig. 2.  The mean and standard deviation (SD) across the entire sequence of 
strides (green) do not capture the fluctuating nature of the stride time signal. The 
mean and SD from strides 1-20 (orange), for example, differ from the mean and SD 
of strides 140-160 (magenta). 
 
 
 

Discussion & Conclusion 
Reduced complexity characterizes biological systems that are 
rigid, unchanging and predictable.5  Similarly, fractal H exponents 
that approach .5 reflect a random, simplistic physiologic system.6  
Increases in complexity and fractal exponents reflect more 
complex, adaptable, healthy dynamical systems. 
 
Based on our findings, healthy individuals walking on a 
motorized treadmill produce a less complex stride time signal, 
suggesting the treadmill system is not sufficiently complex to 
challenge gait in healthy individuals. Paradoxically, gait dynamics 
are not altered on a treadmill in individuals with Parkinsonism, 
suggesting that the consistent pacing produced on a treadmill 
may provide rehabilitative benefits in that population.7 
  
In persons with asymmetric lower extremity paresis, our findings 
provide some evidence that using an AFO may produce gait 
signals representing that of a more complex, adaptable and 
healthy dynamical system. 
 
Interpreting nonlinear gait dynamics may provide more insight 
about one’s walking capacity than is provided through traditional 
linear measurements of gait parameters. 

 
 
 
 
 
 
 
 
Fig. 6. Trial series for patient’s stride time data. Sample entropy = 1.806 and the 
H exponent = .57 without the AFO; sample entropy = 2.526 and the H exponent 
= .71 with the AFO. 
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While we may have little knowledge of how nonlinear dynamical 
measurement procedures are informing rehabilitation practice, it 
is likely some of our faculty are exploring those concepts.  A 
recent Medline search, for example, indicated the number of 
publications using the key words “nonlinear dynamics” OR 
“complexity” OR “fractals” AND “movement” have increased 
exponentially since Wittman & Phillips1 published the first paper 
using “nonlinear dynamics” and “movement” as key words in 
1969 (Fig. 1).  
  
In particular, examining nonlinear properties of movement 
variability (e.g., complexity and fractals) in the context of 
rehabilitation is emerging as a potentially more informative way to 
analyze movement tasks that require a complex interaction of 
body segments than examining traditional linear measurements 
of those tasks.2  The movement system is dynamical, one that 
exhibits fluctuating change over time or over repeated 
movements, as illustrated in Fig. 2.  Linear analyses (mean and 
SD) may inadequately quantify the fluctuating nature of such 
signals. 

 

Introduction 

To describe how gait variability, analyzed via nonlinear methods, 
may inform our interpretation of walking capacity.  We’ve 
examined effects of treadmill ambulation or of using ankle-foot 
orthoses (AFOs) on gait. 
 

 

Purpose 

Data Processing 
 Complexity across trial series data was quantified with sample 

entropy (SampEn) according to methods described by 
Richman & Moorman.3  

 Self-similarities in trial series data were quantified with Hurst 
(H) exponents via adaptive fractal analysis according to 
methods described by Riley et al.4 

o H = 0.5 random process, data points uncorrelated. 
o 0.5 < H < 1.0  persistently correlated process, increases 

in signal more likely followed by further increases. 
o H < 0.5  anti-persistent process, increases in signal 

more likely to be followed by subsequent decreases. 
  
Statistical Analyses 
 Linear estimates (means & SDs) were calculated for each gait 

parameter (stride length and stride time). 
 SampEn and H exponents calculated for each gait parameter. 
 Where appropriate, dependent t-tests (α = .05) were used to 

compare data between walking conditions (i.e., overground vs 
treadmill; without AFO vs with AFO). 

Methods 
Treadmill Effects 
 In healthy participants (Fig. 4), mean stride times were 

equivalent in overground (1.03±.05 s) and treadmill (1.03±.05 
s) conditions (p=.260), but stride time signals were less 
complex (overground SampEn 2.20±.15, treadmill SampEn 
1.89±.21) and less self-similar (overground H exponent 
.81±.09, treadmill H exponent .73±.10) on the treadmill. 

 Stride time signals in participants with Parkinsonism (Fig. 5), 
however, were equivalent in complexity (overground SampEn 
1.89±.28, treadmill SampEn 1.87±.28) and in fractal self-
similarity (overground H exponent .74±.12, treadmill H 
exponent .78±.06). Mean stride times were also equivalent 
(1.10±.09 s and 1.12±.14 s, respectively), though they walked 
more slowly (1.06±.14 m/s vs .90±.14 m/s) on the treadmill 
with reduced stride lengths (1.15±.08 m vs 1.01±.09 m). 

 
AFO Effects 
 In select individuals with asymmetric lower extremity paresis 

(Fig. 6), sample entropy (e.g., 1.806 and 2.526, respectively) 
and fractal H exponents (e.g., .57 and .71, respectively) 
increased when walking with the AFO. 

Results 

Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. A trial series illustrates a complex signal with chaotically fluctuating data (A).  
Data encompassing two series of independent sets of strides are presented (B and 
C).  An overlay plot illustrates repeating 3-point vectors (D).  Trial series with lower 
proportions of repeating vectors have higher sample entropy values. 
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Participants 
 Healthy participants (n=20); 
 Participants with Parkinsonism (n=6); 
 Participants with hemiparesis following stroke (n=13); 
 Participant (n=1) with asymmetric lower extremity paresis 

associated with chronic inflammatory demyelinating 
polyradiculneuropathy (CIDP). 

  
Instrumentation 
 An APDM Movement Monitoring Solutions inertial system 

(APDM Inc., Portland, OR) with 6 sensors incorporating 
gyroscopes, magnetometers & triaxial accelerometers was 
used to capture stride time and stride length data. 

 Data were processed with APDM’s Mobility Lab software and 
IWalk plug-in. 

 Nonlinear dynamics were analyzed with custom software 
developed at the Center for Cognition, Action & Perception 
(University of Cincinnati) and a MATLAB Runtime Version 
R2014B (8.4) compiler (The MathWorks, Inc., Natick, MA). 
 

Procedures 
 Participants completed 6-minute walking trials at preferred 

walking speeds: 
o Overground along a 30-m path; 
o Healthy volunteers and participants with Parkinsonism 

additionally completed trials on a motorized treadmill; 
o Paretic participants completed trials while wearing an AFO 

to compensate for their lower extremity strength deficits. 

Methods 

Figure 4 
 
 
 
 
 
 
 
 
 
Fig. 4.  Representative stride time data from a healthy participant in the overground 
and treadmill conditions illustrates greater signal complexity overground. 

Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Number of publications annually using key words (“nonlinear dynamics” OR 
“complexity” OR “fractals”) AND “movement,” per a Medline search on 09/18/2017.  
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Figure 5 
 
 
 
 
 
 
 
 
 

Fig. 5. Representative stride time data from a participant with Parkinsonism in the 
overground and treadmill conditions illustrates comparable signal complexity. 
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